Демонстрационный вариант по физике

Инструкция по выполнению работы

Тест состоит из частей 1 и 2. На его выполнение отводится 90 минут. Задания рекомендуется выполнять по порядку. Если задание не удается выполнить сразу, перейдите к следующему. Если останется время, вернитесь к пропущенным заданиям.

Часть 1

К каждому заданию части 1 дано несколько ответов, из которых только один верный. Выполните задание. В бланке ответов под номером задания поставьте крестик (X) в клеточке, номер которой соответствует номеру выбранного Вами ответа.

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

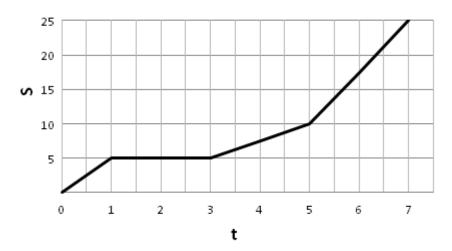
Десятичные приставки

Наимено-	Обозначение	Множитель	Наименование	Обозначение	Множитель
вание					
гига	Γ	109	санти	С	10^{-2}
мега	M	10 ⁶	милли	M	10^{-3}
кило	К	10 ³	микро	MK	10^{-6}
гекто	Γ	10 ²	нано	Н	10^{-9}
деци	Д	10^{-1}	пико	П	10^{-12}

Константы	
число π	$\pi = 3,14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2 / \text{kg}^2$
универсальная газовая постоянная	$R = 8,31 \; \text{Дж/(моль·К)}$
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_{\rm A} = 6 \cdot 10^{23} \; { m моль}^{-1}$
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{K} \mathrm{n}^2$
модуль заряда электрона (элементарный	$e = 1,6 \cdot 10^{-19} \text{ Кл}$
электрический заряд)	
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{c}$

Соотношение между различными единицами		
температура	$0 \text{ K} = -273 ^{\circ}\text{C}$	
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг	
1 атомная единица массы эквивалентна	931,5 МэВ	
1 электронвольт	$1 \ \mathrm{9B} = 1,6 \cdot 10^{-19} \ \mathrm{Дж}$	

Масса частиц	
электрона	$9,1\cdot10^{-31}$ кг $\approx 5,5\cdot10^{-4}$ а.е.м.
протона	$1,673 \cdot 10^{-27}$ кг $\approx 1,007$ а.е.м.
нейтрона	$1,675 \cdot 10^{-27}$ кг $\approx 1,008$ а.е.м.


Плотность		подсолнечного масла	900 кг/м ³
воды	$1000 \ \text{кг/m}^3$	алюминия	2700 кг/м ³
древесины (сосна)	$400 \ \mathrm{kg/m}^3$	железа	7800 кг/м ³
керосина	$800 \ \text{кг/m}^3$	ртути	13 600 кг/м ³

Удельная теплоёмкость			
воды $4,2\cdot10^3$ Дж/(кг·К)		алюминия	900 Дж/(кг⋅К)
льда $2,1\cdot10^3$ Дж/(кг·К)		меди	380 Дж/(кг-К)
железа 460 Дж/(кг-К)		чугуна	500 Дж/(кг⋅К)
свинца 130 Дж/(кг-К)			,
Удельная теплота			
парообразования воды	$2,3\cdot10^{6}$ Дж/кг		
плавления свинца	$2,5\cdot10^4$ Дж/кг		
плавления льда	3,3·10 ⁵ Дж/кг		

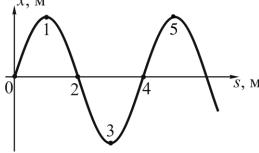
Нормальные условия:	давление $-10^5 \Pi a$,	температура – 0 °C
---------------------	---------------------------	--------------------

Молярная м					
азота	$28 \cdot 10^{-3}$	кг/моль	кислорода	$32 \cdot 10^{-3}$	кг/моль
аргона	40.10^{-3}	кг/моль	лития	6.10^{-3}	кг/моль
водорода	$2 \cdot 10^{-3}$	кг/моль	молибдена	$96 \cdot 10^{-3}$	кг/моль
воздуха	$29 \cdot 10^{-3}$	кг/моль	неона	$20 \cdot 10^{-3}$	кг/моль
гелия	4.10^{-3}	кг/моль	углекислого газа	44.10^{-3}	кг/моль
			3		

На рисунке представлен график зависимости пути S велосипедиста от времени t. Определите интервал времени после начала движения, когда велосипедист двигался со скоростью 5м/с.

1) От 5с до 7с

1


- 2) От 3с до 5с
- 3) От 1с до 3с
- 4) От 0 до 1с

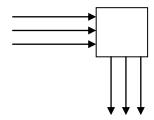
- **2** Расстояние между центрами двух шаров равно 1м, масса каждого шара 1кг. Сила всемирного тяготения между ними примерно равна:
 - 1) 1 H

- 3) 7*10⁻⁵ H
- 2) 0,001 H
- 4) 7*10⁻¹¹ H
- На рисунке показан профиль бегущей волны в некоторый момент времени. Разность фаз колебаний точек 0 и 2 равна: , х, м

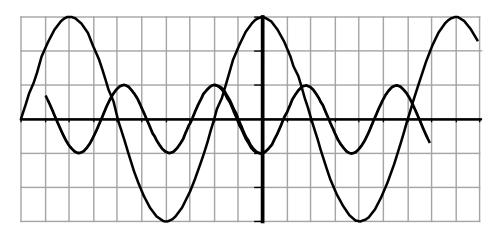
- 2) π
- 3) $\pi/4$
- 4) $\pi/2$

- 4 Какие частицы находятся в узлах решетки металла?
 - 1) Нейтральные атомы
 - 2) Электроны
 - 3) Отрицательные ионы
 - 4) Положительные ионы
- 5 Газ в сосуде сжали, совершив работу 30 Дж. Внутренняя энергия газа при этом увеличилась на 25 Дж. Следовательно газ ...
 - 1) Получил извне количество теплоты, равное 5 Дж
 - 2) Отдал окружающей среде количество теплоты, равное 5 Дж
 - 3) Получил извне количество теплоты, равное 55 Дж
 - 4) Отдал окружающей среде количество теплоты, равное 55 Дж
- **6** Сила тока, текущего по проводнику, равна 2 А. Какой заряд пройдет по проводнику за 10 с?
 - 1) 0,2 Кл

3) 20 Кл

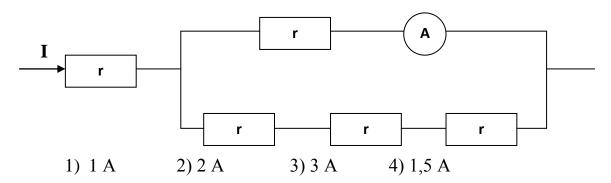

2) 5 Кл

- 4) 2 Кл
- 7 Наименьшая упорядоченность в расположении частиц характерна для:
 - 1) Газов


- 3) Кристаллических тел
- 2) Жидкостей
- 4) Аморфных тел

9

- 8 Пройдя некоторую оптическую систему, параллельный пучок света поворачивается на 90° (см. рисунок). Оптическая система представляет собой...
 - 1) Собирающую линзу
 - 2) Рассеивающую линзу
 - 3) Плоское зеркало
 - 4) Матовую пластинку


- Абсолютная температура и объем одного моля идеального газа уменьшились в 3 раза. Как изменилось при этом давление газа?
 - 1) Увеличилось в 3 раза
 - 2) Увеличилось в 9 раз
 - 3) Уменьшилось в 3 раза
 - 4) Не изменилось
- на рисунке приведены осциллограммы напряжений на двух различных элементах электрической цепи переменного тока.

Колебания этих напряжений имеют:

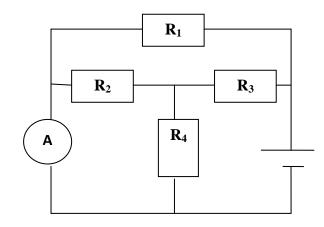
- 1) Одинаковые периоды, но различные амплитуды
- 2) Различные периоды и различные амплитуды
- 3) Различные периоды, но одинаковые амплитуды
- 4) Одинаковые периоды и одинаковые амплитуды
- **11** Ядро урана ${}^{238}_{92}U$ состоит из:
 - 1) 92 нейтронов и 146 протонов
- 3) 92 протонов и 238 нейтронов
- 2) 92 протонов и 146 нейтронов
- 4) 92 протонов и 92 электронов

- **12** Напряжение на неоднородном участке цепи это работа, совершаемая силами:
 - 1) Электростатического поля по перемещению единичного положительного заряда вдоль участка
 - 2) Сторонними по перемещению единичного положительного заряда вдоль участка
 - 3) Электростатического поля и сторонними по перемещению единичного положительного заряда вдоль участка
 - 4) Электростатического поля по перемещению заряда q вдоль участка
- Через участок цепи (см. рисунок) течет постоянный ток I=4 А. Что показывает амперметр? Сопротивлением амперметра пренебречь.

- **14** Тело массой 1кг движется согласно уравнению x=2+4t. Его кинетическая энергия равна:
 - 1) 2 Дж
- 2) 8 Дж
- 3) 4 Дж
- 4) 16 Дж
- **15** Самолет летит по прямой с постоянной скоростью на высоте 9000 м. Систему отсчета, связанную с Землей считать инерциальной. В этом случае:
 - 1) На самолет не действует сила тяжести
 - 2) Сумма всех сил, действующих на самолет, равна нулю
 - 3) На самолет не действуют никакие силы
 - 4) Сила тяжести равна силе Архимеда, действующей на самолет
- Тело движется по прямой. Под действием постоянной силы величиной 4 Н за 2 с импульс тела увеличился и стал равен 20 кг*м/с. Первоначальный импульс тела равен:
 - 1) 4 кг*м/с
- 3) 12 кг*м/с
- 2) 8 кг*м/c
- 4) 28 κΓ*м/c

- 17 В каком излучении энергия фотонов имеет наименьшее значение?
 - 1) В рентгеновском
 - 2) В ультрафиолетовом
 - 3) В видимом
 - 4) В инфракрасном
- 18 Постоянный магнит притягивает:
 - 1) Одноименный полюс второго магнита
 - 2) Любые металлические предметы
 - 3) Некоторые железосодержащие сплавы
 - 4) Любые железосодержащие сплавы
- На проводник с током длиной 5 см со стороны магнитного поля действует сила, равная 0,01 Н. Угол между проводником и вектором индукции магнитного поля равен 60°, сила тока в проводнике равна 4 А. Чему равен модуль индукции магнитного поля?
 - 1) 0,06 Тл
- $2) 0,1 T\pi$
- 3) 5,77 Тл
- **4)** 10 Тл
- Температура нагревателя идеальной тепловой машины равна 727°C, а температура холодильника равна 27°C. КПД машины равно
 - 1) 27/727

20


- 2) 700/727
- 3) 3/10
- 4) 7/10

Часть 2

Ответами к заданиям этой части (1 — 8) являются числа. Каждую цифру следует заполнять в бланк в отдельную клетку без указания единиц измерения.

- Мальчик на санках спустился с ледяной горы высотой 10 м и проехал по горизонтали до остановки 50 м. Сила трения при его движении по горизонтальной поверхности равна 80 Н. Чему равна общая масса мальчика с санками? Считать, что по склону горы санки скользили без трения.
- Тело массой 1 кг вращается в вертикальной плоскости на нити длиной 1 м. Когда тело проходит нижнюю точку, сила натяжения нити Т=80 Н. В момент, когда скорость тела направлена вертикально вверх, нить обрывается. На какую высоту h относительно нижней точки окружности поднимается тело? Ответ округлите до одного знака после запятой.

- На дифракционную решетку, имеющую 500 штрихов на мм, перпендикулярно ей падает плоская монохроматическая волна. Какова длина падающей волны, если спектр 4-го порядка наблюдается в направлении, перпендикулярном падающим лучам? Ответ дайте в нанометрах.
- В сосуд с водой при температуре 20°С поместили 100 г льда при температуре -8°С. Какая температура установится в сосуде, если теплоемкость сосуда с водой равна 1,67 кДж/К? Ответ выразите в градусах Цельсия.
- Б Найдите силу тока I_A через амперметр (см. рисунок), если сопротивление резисторов R_1 =20 Ом, R_2 = R_4 =8 Ом, R_3 =1 Ом. ЭДС источника 50 В, его внутреннее сопротивление r=1 Ом. Сопротивлением амперметра пренебречь.

- 6 Передатчик излучает электромагнитную волну λ=300 м. Сколько электромагнитных колебаний происходит в течении одного периода звуковых колебаний с частотой υ=500 Гц?
- Атомы водорода могут излучать характерные радиоволны с длиной волны λ_0 =21 см (в системе отсчета, связанной с излучающим атомом). Какую длину волны λ имеет принимаемое на Земле излучение атомов водорода, движущихся со скоростью 0,6с перпендикулярно направлению на Землю? Ответ выразите в сантиметрах.
- 8 Период полураспада радиоактивного йода-131 равен 8 суткам. За какое время количество атомов йода-131 уменьшится в 1000 раз? Ответ выразите в сутках.